Role of inhibition in cortical reorganization of the adult raccoon revealed by microiontophoretic blockade of GABA(A) receptors.

نویسندگان

  • L Tremere
  • T P Hicks
  • D D Rasmusson
چکیده

Cortical reorganization was induced by amputation of the 4th digit in 11 adult raccoons. Animals were studied at various intervals, ranging from 2 to 37 wk, after amputation. Recordings were made from a total of 129 neurons in the deafferented cortical region using multibarrel micropipettes. Several types of receptive fields were described in reorganized cortex: restricted fields were similar in size to the normal receptive fields in nonamputated animals; multi-regional fields included sensitive regions on both adjacent digits and/or the underlying palm and were either continuous over the entire field or consisted of split fields. The proportion of neurons with restricted fields increased with time after amputation and was greater than previously found in subcortical regions. A GABA(A) receptor antagonist (bicuculline methiodide), glutamate, and GABA were administered iontophoretically to these neurons while determining their receptive fields and thresholds. Bicuculline administration resulted in expansion of the receptive field in 60% of the 93 neurons with cutaneous fields. In most cases (33 neurons) this consisted of a simple expansion around the borders of the predrug receptive field, and the average expansion (426%) was not different from that seen in nonamputated animals. In some neurons (n = 4), bicuculline produced an expansion from one digit onto the adjacent palm or another digit, an effect never seen in control animals. Bicuculline also changed the split fields of seven neurons into continuous fields by exposing a responsive region between the split fields. Finally, bicuculline changed the internal receptive field organization of 10 neurons by revealing subfields with reduced thresholds. In contrast to the situation in nonamputated animals, iontophoretic administration of glutamate also produced receptive field expansion in some neurons (n = 6), but the size and/or shape of the change was different from that produced by bicuculline, indicating that the effects of bicuculline were not due to an overall facilitation of neuronal activity. These results are consistent with the hypotheses that an important component of long-term cortical reorganization is the gradual reduction in effective receptive field size and that intracortical inhibitory networks are partially responsible for these changes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corticocortical inhibition of peripheral inputs within primary somatosensory cortex: the role of GABA(A) and GABA(B) receptors.

A conditioning-test pulse paradigm was used in combination with microiontophoresis to examine the corticocortical modulation of somatosensory processing. Single-cell recordings were made in the glabrous digit representation of primary somatosensory (S1) cortex in anesthetized raccoons. Test stimulation of the periphery (the on-focus digit) was preceded by conditioning stimulation of the cortica...

متن کامل

Acute sleep deprivation preconditions the heart against ischemia/ reperfusion injury: the role of central GABA-A receptors

Objective(s): Central γ-aminobutyric acid (GABA) neurotransmission modulates cardiovascular functions and sleep. Acute sleep deprivation (ASD) affects functions of various body organs via different mechanisms. Here, we evaluated the effect of ASD on cardiac ischemia/reperfusion injury (IRI), and studied the role of GABA-A receptor inhibition in central nucleus of amygdala (CeA) by assessing nit...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Reduction of the Morphine Maintenance by Blockade of the NMDA Receptors during Extinction Period in Conditioned Place Preference Paradigm of Rats

Introduction: Activation of N-methyl-d-aspartate (NMDA) glutamate receptors in the nucleus accumbens is a component of drug-induced reward mechanism. In addition, NMDA receptors play a major role in brain reward system and activation of these receptors can change firing pattern of dopamine neurons. Blockade of glutamatergic neurotransmission reduces the expression of conditi...

متن کامل

Study of the the anxiolytic effects of fennel and possible roles of both gabaergic system and estrogen receptors in these effects in adult female rat

Introduction: Fennel is rich in phytoestrogens and is used for estrogen deficiency disorders. Estrogens affect anxiety through neurochemical systems such as GABA-A receptors. In this study the effects of fennel on GABA-A and estrogen receptors in anxiety were investigated. Methods: Adult female Wistar rats weighing (180±20 g) were divided into 8 groups. Groups received saline, fennel (200, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 86 1  شماره 

صفحات  -

تاریخ انتشار 2001